VII. PROBLEMS:

1) An inductive circuit has a resistance of $\mathbf{2 . 0}$ Ohms in series with an inductance of 0.015 henry? Find (a) Current (b) power Factor (c) Power consumed? When connected across 200 Volts, 50 Hz . Supply mains?
Ans Given data
$R=2.0$ Ohms, $L=0.015$
$V=200 \mathrm{~V}, \quad f=50 \mathrm{~Hz}$.
Formula used

$$
\begin{aligned}
& Z=\sqrt{R^{2}+X_{L}{ }^{2}} \\
& X_{L}=2 \Pi f L \\
& 1=1 z \\
& \text { P.F }={ }^{R} / \mathrm{z} \\
& \text { Power }=\text { VI } \operatorname{Cos} \mathrm{C}(\text { P.F) } \\
& X_{L}=2 x^{22} / 7 \times 50 \times 0.015=4.714 \text { Ohms. } \\
& z=\sqrt{(2)^{2}+(4.174)^{2}} \\
& =\sqrt{26.22}=5.121 \text { Ohms. }
\end{aligned}
$$

(a) $\quad \mathrm{I}=\mathrm{V} / \mathrm{Z}=200 / 5.121=39.05$ Amps.
(b) Power Factor $={ }^{R} / z=2 / 5.121=0.39$
(c) Power Consumed $\mathrm{P}=\mathrm{VI} \operatorname{Cos} \varnothing$

$$
\begin{aligned}
& =200 \times 39.05 \times 0.39 \\
& =3045.9 \text { Watts. }
\end{aligned}
$$

2) Calculate the Line and Phase current of AC, 3 phase, 400 Volts, 7.5 B.H.P.? Motor with a power factor of 0.8 and efficiency 90%, when the winding is connected (a) in star (b) in Delta?
Ans Given Data
```
    \(\mathrm{V}_{\mathrm{L}}=400\) Volts , 3 Phase
    BHP \(=7.5\), P.F \(=0.8\)
    \(\eta=90 \%\)
```


Formula used -
Power $P=\sqrt{3 \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \operatorname{Cos} \varnothing}$
BHP $=7.5 \times 746$ Watts.
$=5595$ Watts.
Input $(P)={ }^{\text {Output }} / \eta={ }^{5595} / 0.9$
$P=6216.66$ Watts.
$\mathrm{P}=\sqrt{3 \mathrm{~V}_{L} \mathrm{I}_{\mathrm{L}} \operatorname{Cos} \varnothing}$
$6226.66=\sqrt{3 \times 400 \times I_{L \times} 0.8}$
$I_{L}=\underline{6216.66}$

$$
\begin{aligned}
& \quad \sqrt{3 \times 400 \times \mathrm{I}_{\mathrm{L} \times 0.8}} \\
& \mathrm{I}_{\mathrm{L}} \quad=\quad 11.2 \mathrm{Amps} .
\end{aligned}
$$

(a) In star Line current = Phase current

$$
\text { Therefore } \mathrm{I}_{\mathrm{Ph}}=\text { 11.2 Amps. }
$$

(b) In Delta Phase current

$$
I_{P h}=I_{L} / \sqrt{3}=11.2 / \sqrt{3}=6.4 \text { Amps. }
$$

3) A 250 KVA, 11000/400 Volts Delta / Star $\mathbf{3}$ phase transformer has load of 100 Amps. Find the line current on primary?
Ans Given Data

Primary Voltage V_{P}	$=11000$ Volts
Secondary Voltage Vs	$=440 / \mathrm{V}_{3} \quad$ (Since star connected)
Secondary Voltage Is	$=100 \mathrm{Amps}$.
	$=250,000 \mathrm{VA}$
Power	
Formula $: \quad \mathrm{Vs} / \mathrm{Is}$	$=\mathrm{Ip} / \mathrm{Is}$
$\underline{440 / V_{3}}=\frac{\mathrm{Ip}}{11,000}$	
	$\frac{440 / \sqrt{3}}{11,000} \times 100=\frac{40}{11} \times \sqrt{3}$
	$=2.09 \mathrm{Amp}$.

4) Find the diameter of copper wire in mm, if the resistance of 1.5 Kilometer wire is 7.2 Ohms? (Specific Resistance of copper is $1.7 \times 10^{-6} \mathrm{Ohm} / \mathrm{cm}^{3}$)
Ans Given Data

$$
\begin{aligned}
\text { Length } & =1.5 \mathrm{Km} \\
& =15,000 \mathrm{~cm}
\end{aligned}
$$

Resistance $=7.2$ Ohms.
$\rho=\frac{1.7}{10^{6}}=1.7 \times 10^{-6}$
We Know $\quad R=\rho L / a$

$$
\begin{aligned}
7.2 & =1.7 \times 10^{-6} \times 1,50,000 / \mathrm{a} \\
\mathrm{a} & =1.7 / 1,00,000 \times 1,50,000 / 7.2 \\
& =0.035 \mathrm{sq.cm} .
\end{aligned}
$$

Now $a=\Pi d^{2} / 4$

$$
0.035=22 / 7 \times(d)^{2} / 4
$$

$$
\mathrm{d}=\sqrt{9.035 \times \frac{7}{22} \times 4}=0.21 \mathrm{~cm} .
$$

5) Find the capacity of pump (HP) to pump the water at the rate of 20 Gallons per minute, from the bore well of 250 ft . depth to the over head tank of height 100 ft . Neglect all friction losses. Take specific gravity of the water as ' 1 ' and take efficiency of the pumps as 60% ?
Ans: Given Data

Discharge (Q)	$=20 \mathrm{Gallons}$ per minutes (GPM
Depth of bore well	$=250 \mathrm{ft}$.
Height of the water tank	$=100 \mathrm{ft}$.
Specific gravity of water $(\mathrm{S} . \mathrm{G})$	$=1.0$
Efficiency of the pump (η)	$=60 \%=0.6$
Pump capacity in Horse Power(HP)	$=\frac{\mathrm{Q} \times \text { Head } \times \text { Specific Gravity }}{3960 x^{7}}$

$$
\begin{aligned}
& \text { Total Head }=\text { Depth of bore well + Height of the Tank } \\
& \begin{aligned}
\text { (in feet) }=250 & +100=350 \text { Feet. } \\
\text { Pump Capacity in HP } & =\frac{\mathrm{Q} \times \text { Head } \times \text { Specific Gravity }}{3960 \times \text { ¹ }} \\
& =\frac{20 \times 350 \times 1.0}{3960 \times 0.6}
\end{aligned}
\end{aligned}
$$

