SUB-DISCIPLINE: WORKSHOP TECHNOLOGY

Chapter: Smithing and Forging

01.01.	Forging is a plastic deformation proca) True	ess. b) False
01.02.	Low and medium carbon steels are real. True	eadily forged. b) False
01.03.	High carbon and alloy steels are read a) True	ily forged. b) False
01.04.	Stainless steels are forged specially for a) True	or aerospace uses. b) False
01.05.	Forgeability decreases with temperate becomes excessive. a) True	ature upto a point at which grain growth
01.06.	Which of the following is a good forga) Carbon/low alloy steels c) Iron base super alloys	geable material? b) Martensitic stainless steel d) None
01.07.	Economical, easily controlled and me a) Gas, oil b) Electric Resista	ostly used furnace is
01.06.	Temperature to begin forging for soft a) 1250°C-1300°C b) 800-850°C	
01.09	Brass and Bronze alloys are heated to a) 600-950°C b) 350°C-50°C	
01.10.	Welding is a typical forging operatio a) True	n b) False
01.11.	Which of the following is not used in a) Anvil b) Tongs	hand forging? c) Feeler d) Presses
01.12.	Large machine part can be forged by a) True	hand. b) False
01.13.	Hand forging does not require repeat a) True	ed heating. b) False
01.14.	Anvil block serves as a rigid support a) True	in power hammering. b) False

Downloaded Fi	rom : http://rrbp	ortal.com	1/	
01.15.	Heavy falling part of ha a) True	mmer is calle	ed ram. b) False	
01.16.	In smith forging the wora) Flat and horizontal	_		
01.17.	Capacity of a hammer is a) Weight		by c) Shape	d) None
01.18.	Helve hammers are opera) Eccentric	-	 c) Chain	d) Toggle
01.19.	Trip hammers are actual a) Eccentric			d) Toggle
01.20.	Lever spring Hammers a) Rocking level	_	-	d) None
01.21.	Pneumatic hammers has a) True	s compressor	cylinder and ram cy	ylinders.
01.22.	Steam or air hammers in a) True	nbuilt compre	essor. b) False	

Chapter: Smithing and Forging							
Question	Answer	Question	Answer	Question	Answer	Question	Answer
01.01	a	01.07	a	01.13	b	01.19	d
01.02	a	01.06	a	01.14	a	01.20	a
01.03	b	01.09	a	01.15	a	01.21	a
01.04	a	01.10	a	01.16	a	01.22	b
01.05	b	01.11	С	01.17	a		
01.06	a	01.12	b	01.18	a		

Chapter: Welding and Related Processes

02.01.	Application of pressure a) True		is essential in welding.) False	
02.02.	Plastic welding is also (a) Pressure	called b) Fusion	welding. c) Non-pressure	d) None
02.03.	Fusion welding is also (a) Pressure	calledw b) Fusion	velding. c) Non-pressure	d) None
02.04.	In cold weldinga) Heat	is app b) Pressure		d) None

Downloaded Fi	rom : http://rrbp	ortal.com/		
02.05.	Fusion welding may be a) Autogenous	b) Non-autogenou	s c) Both	d) None
02.06.	If welding temperature a) Plane of weakness			d) None
02.07.	Considerable degree inweldir	ng.		
	a) Single run	b) Multi run	c) Both	d) None
02.08.	Slag and gas inclusions a) Single run	may be higher in b) Multi run	welding.	d) None
02.09.	Nitrogen appearing as n a) Low impact strength c) Both	eedle on certain pla	nes in crystals causes b) High impact strength d) None	
02.10.	Stresses setup in the we a) True	ld by shrinkage ma	y be relieved by annealir b) False	ıg.
02.11.	Oxyacetylene welding i a) True	s suitable for sheets	and plates of thickness b) False	2 to 50mm.
02.12.	Flux is employed during a) True	g welding of mild st	teel. b) False	
02.13.	The temperature of oxysta) 2500°C	acetylene flame in i b) 1539 ⁰ C	ts hottest region is about c) 3200°C	d) None
02.14.	Carburizing flame has e			
	a) Acetylene	b) Oxygen	c) Air	d) None
02.15.	Carburizing flame is neal a) True	cessary for welding	of brass. b) False	
02.16.	High pressure Acetylene a) 1kg/cm ²	e cylinders are char b) 2kg/cm ²		d) None
02.17.	Oxygen cylinders are cha) 1kg/cm ²	narged at a pressure b) 2kg/cm ²	of about	d) None
02.18.	Air acetylene welding processes. a) True	process attains h	nigher temperature than	n other gas
02.19.	Oxy-hydrogen process value a) Low	was used to weld b) High	melting point me	tals. d) None

02.20.	Anode is		pole of DC por b) Negative					d) None
02.21.	1 KWH of electri a) True	city wi	ll create 250 c	alori	es. b) Fa	lse		
02.22.	Two thirds of hea a) Negative	_	nerated near b) Positive		_			d) None
02.23.	Electrode connected to negation a) True			will	burn b) Fa	-	er t	han that is
02.24.	A.C. welding trathe normal open of a) 50-90V	circuit v			• • • • • •		(200	0-400V) to d) None
02.25.	The electric energy		,		,		.C.	·
02.23.	a) 3-4kWH		b) 6-10kWH					d) None
02.26.	The motor in a D a) 0.3 to 0.4		ding has a pov b) 0.6 to 0.7			f		d) None
02.27.	Open circuit (No a) True	load) v	oltage is highe	er tha	an arc b) Fa	•		
02.28.	With D.C. curren a) 30 to 35 V	_		tage	must b			d) None
02.29.	Mean total ampera) 70A	e for a b) 105		e is a	about c) 14			d) None
02.30.	Mean total ampera) 70A	re for a b) 105		rode	is abo			d) None
02.31.	Resistance welding a) True	ng uses	pressure to co	ompl	ete the b) Fa			
02.32.	For joining paloadsi	s used.	-			_	ınd	
02.33.	a) Soft soldering Solder composed a) 150-350 ^o C	of lead		melt		-		d) None . d) None

Downloaded Fr	rom : http://rrbp	ortal.com/		
02.34.	Flux is used to prevent. a) Oxidation	b) Rusting	ces to be soldered. c) Melting	d) None
02.35.	Flux is used to dissolv	re that settle	on the metal surfa	ces during
	heating process. a) Oxides	b) Rusts	c) Carbides	d) None
02.36.	Lead percent and a) 37, 63	d tin percent is us b) 63, 37	sed in soft solder. c) 50, 50	d) 58, 42
02.37.	Lead percent and a) 37, 63	d tin percent is us b) 63, 37	sed in medium solder c) 50, 50	d) 58, 42
02.38.	Leadperce a) 37, 63	nt and tinpercen b) 63, 37	t is used in Electricia c) 50, 50	an solder. d) 58, 42
02.39.	Brazing gives stronger j a) True	oint than soldering.	b) False	
02.40.	Spelter is used in	b) Soldering	c) Both	d) None
02.41.	Spelter fusesred h	eat, butthe melt	ing temperature of t	he parts to
	be joined. a) Above, below	b) Below, above	c) Both	d) None
02.42.	Silver base alloys spelte a) 150-350°C	r has a melting range of b) 600-850°C	c) 350 ^o C-600 ^o C	d) None
02.43.	Maximum percent a) 20	wear in Cross section ar b) 30	ea is allowed on tamp c) 50	ping tool. d) None
02.44.	facing Electrodes a) Soft	are used for welding of b) Hard	tamping tools. c) Any	d) None
02.45.	Thickness of Tamping Tan 140, 70	Fool at top mm at b b) 5, 20 c) 2		
02.46.	Reconditioning of tampa a) Gas	ing tool is done by b) Electric Arc	welding.	d) None
02.47.	For reconditioning of Ta a) Positive	amping Tools,su b) Negative	apply is given to Elec c) Any	trode. d) None
02.48.	One welding layer shoula) True	ld be cooled before doin	g another layer. b) False	

lea Fi	Om : nccp://rrbp	Of Car. Com/		
02.49.	Improper cleaning of su a) Improper penetration			d) None
02.50.	High current and more a a) Lack of Fusion			d) None
02.51.	Excess heat generation (a) Lack of Fusion		c) Shape Deformation	d) None
02.52.	For welding of BCM turnal 350BHN	rret gear hardness o b) 100BHN	of the order ofis main c) 250BHN	ntained. d) None
02.53.	For welding of turret ge a) C-2RL	arelectro	ode of Larsen & Tubro is c) Both	used. d) None
02.54.	12 to 14% Mn is available a) True	ole in main links of	BCM. b) False	
02.55.	During welding of turre a) Water	t gear half portion i b) Oil	s immersed into	 d) None
02.56.	Reconditioning of cutte a) True	r bar is done by wel	lding. b) False	
02.57.	Grinding is not required a) True	for recondition of	turret gear. b) False	

	Chapter: Welding and Related Processes								
Question	Answer	Question	Answer	Question	Answer	Question	Answer		
02.01	b	02.16	a	02.31	a	02.46	b		
02.02	a	02.17	С	02.32	a	02.47	a		
02.03	c	02.18	b	02.33	a	02.48	a		
02.04	b	02.19	a	02.34	a	02.49	a		
02.05	c	02.20	a	02.35	a	02.50	b		
02.06	b	02.21	a	02.36	a	02.51	c		
02.07	b	02.22	b	02.37	b	02.52	a		
02.06	b	02.23	a	02.38	d	02.53	b		
02.09	a	02.24	a	02.39	a	02.54	a		
02.10	a	02.25	a	02.40	b	02.55	a		
02.11	a	02.26	b	02.41	a	02.56	a		
02.12	b	02.27	a	02.42	b	02.57	b		
02.13	С	02.28	a	02.43	a				
02.14	a	02.29	С	02.44	b				
02.15	a	02.30	b	02.45	С				

Chapter: Bench Work and Fitting

03.01.	Vice consists of ba) True	oth jaws movable.	b) Fal	se	
03.02.	Vice jaws have re a) True	placeable jaw plate	es. b) Fal	se	
03.03.		k vice jaw opening b) 95-180mm			d) None
03.04.	Philips screw driv a) Flat	ver hasshape. b) Star		c) Any	d) None
03.05.	While using screwa) Should be	v drivers, jobs b) should not be	kep		d) None
03.06.	For taking out Cira) External			Circlip pliers is used. c) Both	d) None
03.07.	For screwing/unsoa) Open ended	crewing rail clamp. b) Adjustable		spanner is used- c) Box	d) C
03.08.	Allen bolts have a) Hex head	b) Hex groove in h	nead	c) Slot in head	d) None
03.09.	Stud extractor is ua) True	used for removing b	oroken b) Fal		
03.10.	Chisels available (a) Hot	on machines are not b) Cold	rmally		d) None
03.11.	Hacksaw blade sh a) Away from		teeth s	lope from hand c) Any	le. d) None
03.12.	During Hacksaw of a) Forward	cutting force is mor b) Backward		stroke.	d) None
03.13.	Hacksaw operatio a) 40-50	n should be done b) 10-20	St	rokes in one minute. c) 60-90	d) None
03.14.	Hard material sho a) Small	uld be applied b) Large	force	es in Hacksaw cutting. c) Any	d) None
03.15.	For threads repair a) Flat	File is to b) Needle	ised.	c) Square	d) Any

Downloaded F	rom : http:/	/rrbportal.com/		
03.16	. Files are	hence should be pl	aced carefully.	
	a) Brittle	b) Tough	c) Lined	d) None
03.17	. Lip angle of drill	-bil for general work is	•••••	
	a) 118°	b) 59°	c) 90°	d) None
03.18	. There are	taps in a tap-set.		
	a) One	b) Two	c) Three	d) Four
03 10	Tan drill size T F).S =		
03.19	*	b) 0.8xTap size	c) Tap size – p	d) None
00.00				
03.20	*	oved bacl		d) None
	a) Quarter round	b) Half round	c) run round	d) None

Chapter: Bench Work and Fitting								
Question	Answer	Question	Answer	Question	Answer			
03.01	b	03.08	b	03.15	b			
03.02	a	03.09	a	03.16	a			
03.03	b	03.10	b	03.17	a			
03.04	b	03.11	a	03.18	С			
03.05	b	03.12	a	03.19	b			
03.06	a	03.13	a	03.20	a			
03.07	d	03.14	a					

Chapter: Measurement and Inspection

	Chapte	1. Measurement and 1	<u>inspection</u>	
04.01.	Go and no-go gauges real True	eveal actual size of dime b) False	ension.	
04.02.	International standard orange radiation of Kry a) True	-	0763.73 vacuum wav	ve length of
04.03.	Micrometer is aa) End	standard instrumen b) Length	c) Both	d) None
04.04.	Graduated rule or scale a) Precision	is aInstrumen b) Non-Precision		d) None
04.05.	Vernier-Calliper is a a) Precision		c) Both	d) None
04.06.	In external microi intoequal p	,	c) 100	d) None

Courtesy : Indian Railway

04.07.	The micrometer screw h a) 1mm	has a pitch of. b) 0.5mm	•••••	c) 2mm	d) 10mm
04.08.	Least count of microm 0.5mm will be		divisions o	n thimble and pitc	ch equal to
	a) 0.01mm			c) 0.1mm	d) 0.2mm
04.09.	Reading of micrometer passed reference line on a) True		e reading + l b) False	Least count x No. o	of divisions
04.10.	Vernier-Caliper has Ve main scale. The Least coa) 0.01mm			sions correspond to	o 49mm on d) None
04.11.	Reading of Caliper = M a) True	ain scale reac	ling + Least b) False	count x Vernier sca	ıle reading.
04.12.	Comparators are used for a) True	or simple and	accurate corb) False	mparison of parts.	
04.13.	In dial Indicator with indicatestrave a) 1mm		ions, turn	of pointer by on	ne division d) None
04.14.	Optical comparators suf a) True	ffer less wear	during usage b) False	e than the mechanic	cal type.
04.15.	Protractor is used for a) Linear			c) Both	d) None
04.16.	Direct measurement of a) Bevel protractor	•	by	c) Both	d) None
04.17.	Where precision in mea a) Bevel gauge	surement of a b) Angle ga			ed. d) None
04.18.	Taper micrometers are tall a) True	en times faste	er than older b) False	conventional meth-	ods.
04.19.	Gripping of ring spanne a) True	er is better tha	n open end s b) False	spanner.	
04.20.	Screwing and unscrewing a) Open end spanner	_			d) None

04.21.	Allen Key is used for a) Hex	head bolts. b) Round	c) Both	d) None
04.22.	Allen key consists a) 6	sides (faces). b) 4	c) 3	d) None
04.23.	Wing nuts are used for tall a) True	ightening/loosening hacks b) False	saw.	
04.24.	Finisher tap has	threads ground in Tapper b) 3-5	c) 1-2	d) None
04.25.	9	is not a component of an ob) Depth Gauge		r? d) None
		is not a component of Ver	-	d) None

	Chapter: Measurement and Inspection									
Question	Answer	Question	Answer	Question	Answer	Question	Answer			
04.01	b	04.06	a	04.15	b	04.22	a			
04.02	a	04.09	a	04.16	a	04.23	a			
04.03	a	04.10	b	04.17	b	04.24	c			
04.04	b	04.11	a	04.18	a	04.25	b			
04.05	a	04.12	a	04.19	a	04.26	c			
04.06	a	04.13	b	04.20	a					
04.07	b	04.14	a	04.21	b					

Chapter: Limit, Fits and Surface Quality

05.01. A system which ensures that one component will assemble correctly with any mating component; both being chosen at random is called interchangeable system or a system of limits and fits.

a) True

Downloaded From : http://rrbportal.com/

b) False

05.02. Selective assembly is that in which each part must be selected to fit its mating part.

a) True

b) False

05.03. Basic size is the size in relation to which higher limits of variation are determined.

a) True

b) False

05.04. Nominal size is used in the precision measurement of parts.

a) True

b) False

05.05.	Upper deviation is positive or zero. a) True	b) False
05.06.	Lower deviation is positive or zero. a) True	b) False
05.07.	Tolerance is equal to algebraic d deviations and has an absolute value a) True	ifference between the upper and lower without sign. b) False
05.08.	Tolerance is the difference between limit of size. a) True	the maximum limit of size and minimum b) False
05.09.	$25^{+0.05/-0.03}$ is an example of unilateral a) True	tolerance. b) False
05.10.	In an example $40^{+0.08/-0.02}$ tolerance is a) True	0.10mm b) False
05.11.	Enveloping surface is male part. a) True	b) False
05.12.	Enveloped surface is female parta) True	b) False
05.13.	The relation between the two parts vecertain degree of tightness or looseness. True	where one is inserted into the other with a ess is known as a fit. b) False
05.14.	When shaft is smaller than hole, the a a) True	•
05.15.	In a clearance fit, there is a positive shaft and the smallest possible hole. a) True	ye allowance between the largest possible b) False
05.16.	shaft and smallest possible hole.	ive allowance between the largest possible
05.17.	a) TrueTransition fit does not guarantee eitha) True	b) Falseer interference or a clearance.b) False

Chapter: Limit, Fits and Surface Quality										
Question	Answer	Question	Answer	Question	Answer	Question	Answer			
05.01	a	05.06	b	05.11	b	05.16	b			
05.02	a	05.07	a	05.12	b	05.17	a			
05.03	b	05.06	a	05.13	a					
05.04	b	05.09	b	05.14	b					
05.05	a	05.10	a	05.15	a					

Chapter: Workshop Machines-Lathe machine

06.01.	The first useful from of a) 1700	lathe was made by b) 1800	H. Moudslay in the c) 1900	yeard) None
06.02.	In lathe machine operation a) Revolves	ion the work piece . b) Reciprocates		d) None
06.03.	The bed provides invert a) Carriage	ed guide ways for c b) Tool post		nt of d) None
06.04.	The mechanism for driv	-	ndle speed is house	ed ind) None
06.05.	For supporting the other	end of work piece	is used.	d) None
06.06.	a) Head Stock Cross slide is used to gi		ne tool.	,
06.07.	a) LongitudinalGraduated Circle base is	,	c) Both	d) None
	a) Saddle	b) Cross slide	c) Compound rest	
06.08.	In facing operation tool a) Perpendicular			of the job. d) None
06.09.	Straight turning is the la a) Parallel	the operation in wh b) Perpendicular		to the lathe axis. d) None
06.10.	In thread cutting longitute to be cut per revolution	of the work piece.	_	
	•	•	c) Greater than	•
06.11.	Embossing a diamond process of	shaped pattern on	the surface of a v	vork piece is the
	a) Turning	b) Chamfering	c) Knurling	d) Milling

	Chapter: Workshop Machines-Lathe machine										
Question	Answer	Question	Answer	Question	Answer	Question	Answer				
06.01	b	06.04	a	06.07	c	06.10	a				
06.02	a	06.05	b	06.08	a	06.11	С				
06.03	a	06.06	b	06.09	a						

Chapter: Workshop Machines-Drilling & Boring machine

07.01.		in the process of b) Tapping		d) None
07.02.		lriving mechanisms are cob) Table	ontained in	
07.03.	The expression for thread) is	or Dia of Hole D, in term	ns of T (Dia of Tap) and d (depth of
	a) T-d	b) T+2d	c) T-2d	d) T/2d
07.04.		a process used for enlacuracy to dimension.	rging /finishing the	e hole previously
	a) Reaming		c) Milling	d) None
07.05.	The material used a) HSS	l for making drill-bit is b) MS	c) Cast Iron	d) None
07.06.	machine i	is used to bore holes in lar b) Lathe	rge and heavy parts. c) Boring	
07.07.		he is a type of vertical b) Drilling		d) None
07.08.	longitudinally on		_	
07.00	a) Head Stock		c) Boring bar	·
07.09.	a) Horizontal bori	pindle 355mm is generall ing machine le drilling machine	•	
07.10.	In precision borin a) Cemented carb	g machine the tool tips aride b) Diamond tipped		d) None
07.11.	In horizontal bori a) Horizontal	ng machine the tool revol b) Vertical	ves in aaxis c) Both a &	
07.12.	Thes a) Head Stock	upports the cutter for bori b) Boring bar	ng operations. c) Saddle	d) None

Chapter: Workshop Machines-Drilling & Boring machine									
Question	Answer	Question	Answer	Question	Answer	Question	Answer		
07.01	c	07.04	a	07.07	c	07.10	c		
07.02	a	07.05	a	07.06	b	07.11	a		
07.03	c	07.06	С	07.09	a	07.12	b		

Chapter: Workshop Machines-Shaper & Planner

08.01.	Ram is a compone a) Shaper	ent ofb) Drilling machine	c) Boring Machine	d) None
08.02.	In a shaper materia) Forward	ial cutting takes place in b) Reverse	stroke. c) Both	d) None
08.03.	In a shaper the for a) 3:1	rward to return stroke time b) 3:2	e ratio is c) 2:1	d) None
08.04.	-	ard materials isb) Carbide tipped		d) None
08.05.	In a Shapera) Tool	b) Job	c) Both a & b	d) None
08.06.	In a Planer, tools a) True	are held vertically in the t	ool head mounted on cross b) False	s-rail.
08.07.	In a planera) Tool	b) Job	c) Both a & b	d) None
08.08.	In a shaper feed is a) Tool	s given by the lateral move b) Job	ement of the	d) None
08.09.	More than one too a) Shaper	ol may be mounted in a b) Planner	c) Both a & b	d) None
08.10.	_	t surfaces on heavy parts. b) Planner	\ T > -1	d) None

	Chapter: Workshop Machines-Shaper & Planner										
Question	Answer	Question	Answer	Question	Answer	Question	Answer				
06.01	a	06.04	b	06.07	b	06.10	b				
06.02	a	06.05	a	06.06	a						
06.03	b	06.06	a	06.09	b						

Chapter: Workshop Machines-Slotting & Grinding machine

09.01.	In a slotter the ram hole a) Horizontal axis	ding the tool r b) Vertical a	-	n a c) Both a &		None
09.02.	In a vertical shaper the a) 2^0	ram can be sv b) 5^0	wiveled not n	nore than c) 90 ⁰		ertical. None
09.03.	Removal of large amou	ant of metal ta b) Precision	-		b d)	None
09.04.	The stroke length of ranges from 80 to 900n a) True	•	neral purposoneral b) False	e or precisio	n slotter	usually
09.05.	In a slotter tool, cutting a) True	g pressure acts	perpendicul b) False	ar to the tool	length.	
09.06.	In a slotter tool, no side a) True	e rake is giver	ı. b) False			
09.07.	Grinding is used to rema) True	nove compara	tively little m b) False	naterial 0.25m	ım to 0.5n	nm.
09.08.	Silicon carbide (SiC) is a) Natural	aAl b) Artificial		c) Both a &	b d)	None
09.09.	Vitrified bond is denote a) True	ed by the lette	er 'V'. b) False			
09.10.	Grit (Grain size) denote a) Coarse	-		ne	d) Very f	fine
09.11.	Hardness if bond denot a) Soft	ed by letter Q b) Medium	-	_	d) None	
09.12.	Structure denoted by a a) Open	digit less than b) Dense	n equal to 8 rd c) bo	-	str	ucture.
09.13.	A grinding wheel is Abrasive type Al ₂ O ₃ . a) True	marked as W	/A 46K 5V b) False	17. The lette	er 'A' rep	oresents

Chapter: Workshop Machines-Slotting & Grinding machine							
Question	Answer	Question	Answer	Question	Answer	Question	Answer
09.01	b	09.05	b	09.09	a	09.13	a
09.02	b	09.06	a	09.10	c		
09.03	a	09.07	a	09.11	c		
09.04	a	09.08	b	09.12	a		

Chapter: Workshop Machines-Milling machine & Gear cutting

10.01.	Multiple tooth cu a) Lathe	tter is used in b) Slotter	c) Milling Machine	d) None
10.02.	Knee is a compor a) Lathe		c) Milling Machine	d) None
10.03.	Arbor is a compo a) True	nent of a column ar	nd knee type milling macl b) False	hine.
10.04.	The most commo a) Casting		nod of Gear manufacturing c) Machining	ng isd) None
10.05.	The end mills are a) True	used to cut gears of	f large modules from 20n b) False	nm and larger.
10.06.		y a ring of formed b	oduction of all the to blades. b) Template proce d) None	
10.07.	The template met a) Very large		r producingspur c) Medium	gear teeth. d) None
10.08.	Gears cann a) Spur	ot be produced by g b) Cycloidal	e e e e e e e e e e e e e e e e e e e	d) None
10.09.		method accuracy is. b) Very fine		d) None
10.10.	•		of gears produced in c) Formed cutter	methods d) None

Chapter: Workshop Machines-Milling machine & Gear cutting							
Question	Answer	Question	Answer	Question	Answer	Question	Answer
10.01	С	10.04	c	10.07	a	10.10	a
10.02	С	10.05	a	10.06	b		
10.03	a	10.06	a	10.09	a		

Chapter: Workshop Machines-Press, jigs & fixtures

Ouest	Chapter: Workshop Machines-Press, jigs & fixtures						
			,				
11.10.	The use of jigs a methods before n a) True	nd fixtures requires nachining.	marking oub) False	ts measuring and o	other setting		
11.09.	Jigs are generally a) True	heavier than fixtur	es. b) False				
11.08.	A fixture is a dev a) True	ice which guides th	e cutting too b) False	1.			
11.07.	-	die two or more cu in every stroke of the		ions are accompli	shed at one		
11.06.	Inthe n sides of the neutral Shearing			n and compression	at the two d) None		
11.05.	-	nching, ah b) Other than cylin	-		d) None		
11.04.	Punches and dies a) HSS	are generally made b) High Carbon St			d) None		
11.03.	A die has an oper a) True	ning or cavity to rec	eive the pund b) False	ch			
11.02.	A punch is usuall the lower end of tall a) Upper		·	oress tool which is ther a or b	mounted on d) None		
11.01.	In press, metal is a) True	formed to the desir	ed shape with b) False	hout removal of ch	ips.		

	Chapter: Workshop Machines-Press, jigs & fixtures							
Question	Answer	Question	Answer	Question	Answer	Question	Answer	
11.01	a	11.04	a	11.07	a	11.10	b	
11.02	a	11.05	a	11.06	b			
11.03	a	11.06	b	11.09	b			

Chapter: Workshop Machines-Broaching & sawing machine

12.01.	Contoured surface a) True	es cannot be produce	ed by broaching. b) False	
12.02.	A broach is a mul a) True	tiple edge cutting to	ool. b) False	
12.03.	Broaching is poss a) True	ible only on interna	l surfaces. b) False	
12.04.		aches are used exte b) Carbide	nsively in the broaching oc) Both a & b	of cast iron. d) None
12.05.	Nearly all horizon a) Pull	ntal broaching mach b) Push	ines aretype. c) Both a & b	d) None
12.06.	•	achine specification b) 1000 x 10 mm	1000-10, stroke length is c) 10 m	
12.07.	•	b) The work		d) None
12.08.		are represented by b) Circular	power hacksaws. c) Rectangular	d) None
12.09.		ets aree, wavy	b) Standard, skip and hood) None	ok
12.10.	The three tooth for a) Raker, alternate c) Both a & b	orms aree, wavy	b) Standard, skip and hoo d) None	ok

Chapter: Workshop Machines-Broaching & sawing machine							
Question	Answer	Question	Answer	Question	Answer	Question	Answer
12.01	b	12.04	b	12.07	c	12.10	b
12.02	a	12.05	a	12.06	a		
12.03	b	12.06	a	12.09	a		

Chapter: Threads

13.01. Thread is nothing a) True	· ·) False	
13.02. In India han	d threads are mostly	used.	d) None
a) Left	b) Right	c) Both a & b	

13.03.	Pitch Dia = (Major Dia) a) Single Depth of Threa c) Both a & b		b) Double Depth of Th d) None	read
13.04.	In case of single start the a) Pitch = lead		c) Pitch > Lead	d) None
13.05.	The angle of inclination a) Angle of Thread		gle c) Both a & b	d) None
13.06.	Included angle of BSW a) Rounded	thread is 55 ⁰ and ro b) Angular		d) None
13.07	British Standard fine the BSW threads. a) Larger	reads havee b) Smaller		eters than th
13.08.	American National Throof this thread are			ts and route
13.09.	International Standard T a) Rounded	·	ead) has roots	
13.10.	In the Metric thread desi a) Nominal dia in mm	_		
13.11.	The depth and thickness a) True	of the square threa b) Fal	-	f the pitch.
13.12.	Acme thread is thicker a a) True	nt the root and less t b) Fal		
13.13.	Lead Screw of the lathe a) Acme	is provided with b) Square	thread.	d) None
13.14.	Coupler of railway carria a) V	age and electrical beby	ulbs use threacc) Buttress	d. d) None
13.15.	Buttress thread is suitable a) True	e only when the for b) Fal	•	lirection.
			1	

	Chapter: Threads							
Question	Answer	Question	Answer	Question	Answer	Question	Answer	
13.01	a	13.05	b	13.09	a	13.13	a	
13.02	b	13.06	a	13.10	a	13.14	b	
13.03	a	13.07	a	13.11	a	13.15	a	
13.04	a	13.06	b	13.12	a			

Chapter: Quality Controls

		,	Chapter: Qua	lity Controls	
		True	a record what you	b) False	
14.10.			form the ISO 9000 d Record what you	requires that you Say what you do.	ou do, Do
		surance. 9000	b) 9004	c) 9001	d) None
14.09.			mily of internation	al standards for quality manage	ement and
14.00.	an	d test. ISO 9001	•	c) ISO 9003	d) None
14.08	,	1	,	el for quality assurance in final	,
14.07.		O 9001, ISO 90 Requirements	002, ISO 9003 detai b) Guideline	l the es c) Both a & b	d) None
14.06.	In a)		re 200 defects in 25 b) 16.5	machines then LCLc =	d) 200
14.05.	In (a)	·	te 200 defects in 25 b) 16.5	machines then UCLc =	d) 200
14.04.			defectives are calle b) c chart	ed c) Both a & b	d) None
14.03.		ontrol charts for p charts	attributes are called b) c chart	d c) Both a & b	d) None
14.02.		charts for \overline{X} and Average		c) Fraction defective	d) None
14.01.		spection is tool True	of quality control.	b) False	

Chapter: Quality Controls					
Question	Answer	Question	Answer	Question	Answer
14.01	a	14.05	b	14.09	a
14.02	a	14.06	c	14.10	a
14.03	a	14.07	a		
14.04	b	14.08	c		